If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-52x+56=0
a = 12; b = -52; c = +56;
Δ = b2-4ac
Δ = -522-4·12·56
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4}{2*12}=\frac{48}{24} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4}{2*12}=\frac{56}{24} =2+1/3 $
| 2(4-16b)=8 | | x/5+x/7=7/10 | | 9x+2=-15 | | (x-6)(x-3)-(x-7)(x-7)=24 | | 4K+2=7-6k | | b=0.5 | | -1/14=a/14 | | (x-3)^2(x+1)^2=0 | | 5+(2+y)=77 | | 11+8v=8-5(2v+3) | | -19b=-133 | | 4/9p=8 | | 5+(2+y)=7 | | 6x+3-7=14 | | |4x+5|=15 | | 3(-3k-2)=-16-4k | | 2k-1/3=-5 | | 4x-3/15=x+3/5 | | a-2/5=4/5 | | (12x+25)=x | | 3/5(r-2)=4 | | 96=16b | | 3+4(1+x)=-27 | | (2x-6)=10+10x | | 7(5x+4)=8x+1 | | p/11+9=6 | | -2(x+6)=18 | | 5x2^=31x+73 | | X^-2+2x^-1-8=0 | | -11+2x=-3(2+x) | | 2|x−6|+14=38 | | 6(-p+8)=–6p+12 |